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Abstract
We focus on perturbed regular hyperbranched fractals (pRHF), which are RHF
whose f coordinated centers (f CC) are traps. We compute the mechanical
properties (storage and loss modulus) and the average displacement in the
framework of generalized Gaussian structures, by making use of the eigenvalue
spectrum of the connectivity matrix. We generalize the analysis to the case
of a connectivity matrix perturbed by a diagonal and pure imaginary operator.
Although the above-cited observables in this new situation lose their original
meaning, they still give important information about the underlying structures
and they could help to analyze other phenomena where complex operators are
involved. We obtain analytically the eigenvalue spectrum for pRHF. A drastic
change was observed in the behavior of the studied quantities even for a very
small perturbation strength. However, it is still possible to depict the scaling
of the fractals in the intermediate time (frequency) domains.

PACS numbers: 05.60.Gg, 05.40.−a, 66.20.Cy

(Some figures in this article are in colour only in the electronic version)

1. Introduction

One of the fundamental problems in polymer physics is to understand how the geometry of
the macromolecules affects their dynamical behavior. This quest started with the fundamental
works on dilute solutions for linear chains, pioneered by Rouse [1] and Zimm [2]. The results
were extended to more and more complex architectures, i.e. star polymers [3, 4], dendrimers
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[5–8], hyperbranched polymers [9–12] or small-world networks [13], by making use of the
generalized Gaussian structures [14]. In this framework the structures consist of N beads,
connected to each other by elastic springs with the elasticity constant K. The geometry is
taken into account by connecting each bead to its nearest neighbors. For simplicity, all the
beads will experience the same friction constant ζ with respect to the surrounding viscous
medium (the solvent). Another assumption of the model is that the connecting springs
behave harmonically, and thus the whole structure obeys Gaussian statistics. Many dynamical
properties depend on the eigenvalue spectrum of their connectivity matrix A [14–16]. This
is a real symmetric N × N matrix: the non-diagonal elements Anm equal −1 if the the nth
and mth beads are directly connected and 0 otherwise, while the diagonal elements Amm equal
the number of bonds emanating from the mth bead. The connectivity matrix was recently
used to solve quantum mechanical problems by means of continuous time quantum walks
(CTQWs) [17–19]. In quantum mechanics, the trapping problem was studied via a perturbative
approach [20–22], i.e. in mathematical terms the transfer operator T, normally assumed
equal to the connectivity matrix, was slightly modified by adding to A a pure imaginary
operator Γ acting as a dissipator; therefore, T = Ap = A + Γ. In this paper, we
focus on regular hyperbranched fractals (RHFs) [11, 12] perturbed through Γ, a normal
regular hyperbranched fractal whose f CC are traps. In this case Γ is such that the off-
diagonal elements �jk fulfill �jk = 0 and �jj = iγ if j is a f CC and 0 otherwise.
The operator Ap belongs to the class of complex symmetric operators that in the past few
years acquired importance, since besides CTQWs, they found applications for studying
some chemical problems such as the complex rotation method and the optical potential
method, in which a scattering problem is reduced to a bound state problem in a non-
Hermitian domain, see [27] and references therein. We perform a semi-analytical method
able to obtain the full eigenvalue spectrum. We will focus on the relationship between
the trap strength γ and the dynamical quantities, storage and loss modulus and the average
displacement, in order to investigate the influence of the topology of the structures under
study.

The paper is structured as follows: in section 2 we give a short description of the RHFs
and then, in section 3, we study the spectrum of the fractals without or with traps for arbitrary
functionality f and generation g. In section 4 we will derive new equations for the storage
and the loss modulus (the real and the imaginary part of the complex shear modulus) and for
the average displacement. Then, we will test these equations for perturbed RHFs. We noted
that even a very small trap’s strength will have a big influence on the final results. This paper
will close with conclusions.

2. The structure

Figure 1 displays a RHF of functionality f = 3 and generations g = 1, 2 and 3. To build this
structure one takes the object of generation g = 1, i.e. a star structure with the core connected
by three branches to the external nodes. The next generation g = 2 is obtained by binding
to the external nodes f identical copies of itself through f bonds; we obtain a new star-wise
pattern of (f + 1)2 nodes. By following this iteration procedure, a RHF of generation g will
have (f + 1)g sites. The fractal dimension depends on the functionality f as follows:

d̄r = ln(f + 1)

ln 3
(1)

since increasing from the center the distance by a factor of 3 increases the number of sites
inside it by f + 1. In figure 1 we highlight the position of the traps by open circles.
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  g=1                                                        g=3 g=2

Figure 1. Regular hyperbranched fractal of functionality f = 3 and generations g = 1, 2 and 3.
The traps are displayed by open circles.

3. Evaluation of the eigenvalues

3.1. Spectrum of RHF

For the unperturbed RHF, when there is no trap in the structure we found the eigenvalue
spectrum of the connectivity matrix A by following an algebraic iterative procedure [11, 12].
The eigenvalue problem is reduced to the solution of cubic equations, due to the fact that
the RHFs rescale under a real-space renormalization transformation [12, 25]. Knowing the
eigenvalues of the RHFs of generation g, one obtains the eigenvalues of RHFs of generation
g + 1 by

P
(
λ

(g+1)

i

) = λ
(g)

i , (2)

where P(λ) is the polynomial:

P(λ) = λ(λ − 3)(λ − f − 1). (3)

We set P(λ) = a and equation (3) is recombined:

λ3 − (f + 4)λ2 + 3(f + 1)λ − a = 0. (4)

Equation (4) can be solved analytically by introducing

p = 1
3 [f (f − 1) + 7] (5)

q = 1
27 (5 − f )(f + 4)(2f − 1) (6)

and

ρ = |p/3|3/2. (7)

The roots of equation (4) are then given by the Cardano solutions [28]:

λν = f + 4

3
+ 2ρ1/3 cos

[
μ + 2πν

3

]
, with ν ∈ 1, 2, 3, (8)
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Figure 2. Decimation step for singly coordinated centers, following figure 14 of [12].

where

μ = arccos

(
a − q

2ρ

)
. (9)

In equation (4) we identify the constant a with λ
g

i , and by using equation (8), each non-zero
eigenvalue of generation g will give rise to three new eigenvalues λ

g+1
i .

The non-degenerate eigenvalues include λ = 0, λ = (f + 1), and other eigenvalues
generated by the ‘seed’ λ = (f + 1). For example, at the second generation of RHF we have
five non-degenerate eigenvalues, i.e. λ = 0 and λ = (f + 1) and three eigenvalues obtained
by substituting a = (f + 1) into equation (4). The degeneracy of the degenerate eigenvalues
depends on the generation where they appeared for the first time. Thus, λ = 1, which is
present due to g = 1, is the most degenerate eigenvalue with degeneracy given by

	g = (f − 2)(f + 1)g−1 + 1. (10)

3.2. Spectrum of pRHF

We determine the eigenvalue spectrum of Ap for pRHF by extending the decimation method
[12], developed for γ = 0, to the case γ �= 0. As discussed in section 3.1, the procedure to
obtain the eigenvalues of generation g consists of g − 1 iterative steps. For pRHF the situation
is different in the last iteration. In this iteration, we transform (f + 1)g−1 regular beads to
(f + 1)g−1 jointed star structures whose f CC are perturbed. Thus, whilst equation (4) holds
for the first g − 2 iterations, for the last one we must find another equation which takes into
account this difference in the procedure used to determine the spectrum of the matrix Ap. The
proof is provided for arbitrary f , although in figures 2, 3 and 4 we represent the special case
f = 4. The proof uses the fact that there are three kinds of beads: f CC, beads on connecting
bonds and beads at the end of dangling bonds. For a particular f CC (which is a trap), we
have

(f + iγ − λ)φ0 −
f∑

j=1

φj = 0, (11)

where φ0 is the eigenvector component referred to the center bead and φj are the eigenvector
components of its nearest neighbors. These nearest neighbors (if not peripheral) appear doubly
coordinated:

(2 − λ)φj − φ0 − φm = 0, (12)
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Figure 3. Decimation step for doubly coordinated centers, following figure 15 of [12].

Figure 4. Decimation step for f -coordinated centers, following figure 16 of [12].

where φ0 is the eigenvector component of the f CC neighbor of j and φm denotes the
component of the two-coordinated neighbor of j . The last case is referred to a peripheral bead
component φj :

(1 − λ)φj − φ0 = 0. (13)

Via the decimation procedure [12] the nodes represented by an open circle will disappear in
order to obtain the lowest set of the figure. Figure 2 represents the decimation step for singly
coordinated centers. For this situation the eigenvalue equations read

(1 − λ)φ1j = φ10 for 2 � j � f, (14)
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(f + iγ − λ)φ10 = φ11 +
f∑

j=2

φ1j , (15)

(2 − λ)φ11 = φ01 + φ10 (16)

and

(2 − λ)φ01 = φ00 + φ11. (17)

The solution of this system of linear equations is given by

φ00 = {[(2 − λ)2 − 1][(f − λ)− (f − 1)(1 − λ)−1] − (2 − λ) + iγ [(2 − λ)2 − 1]}φ10. (18)

Thus, equation (18) in terms of P(λ) is

φ00 = [1 − P(λ) + iγ (λ2 − 4λ + 3)]φ10 = [1 − P ∗(λ)]φ10, (19)

where P ∗(λ) = P(λ) − iγ (λ2 − 4λ + 3) and P(λ) is given by equation (3). We consider
now the case of two-coordinated beads, as illustrated in figure 3. Here, the components of
the beads that remain after decimation are φ00, φ10 and φ20, and others (represented by open
circles) will disappear. The eigenvalue equations are

(2 − λ)φ01 = φ00 + φ12, (20)

(2 − λ)φ12 = φ01 + φ10, (21)

(1 − λ)φ1j = φ10 for 3 � j � f, (22)

(f + iγ − λ)φ10 = φ11 + φ12 + (f − 2)φ13, (23)

(2 − λ)φ11 = φ22 + φ10 (24)

and

(2 − λ)φ22 = φ11 + φ20. (25)

By playing around with these equations, we obtain the solution

φ00 + φ20 = [2 − P ∗(λ)]φ10. (26)

The case of f CC is shown in figure 4. After the decimation procedure only the f CC will
survive. The eigenvalue problem is given by the equations

(2 − λ)φj1 = φ0j + φj0 for 1 � j � f (27)

(2 − λ)φ0j = φ00 + φj1 for 1 � j � f (28)

and

(f − λ)φ00 =
f∑

j=1

φ0j . (29)

The solution of this system of equations is
f∑

j=1

φ0j = [f − P ∗(λ)]φ00. (30)

Thus, as in the case of the uperturbed regular hyperbranched fractal, the eigenvalues of
generation g + 1 are given by the eigenvalues of generation g, solving the equation

P ∗(λ(g+1)

i

) = λ
(g)

i . (31)
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Thus, the whole eigenvalue spectrum can be determined analytically, by knowing the
eigenvalues of the small unperturbed RHF of generation g = 1.

For the pRHF the eigenvalues of generation g, denoted by λg , will be determined by the
eigenvalues of generation g − 1, λg−1 = a of the unperturbed RHF, simply by solving the
third-order polynomial:

λ3
g − (f + 4 + iγ )λ2

g + [3(f + 1) + 4iγ ]λg − 3iγ − a = 0. (32)

It is simple to see that equation (32) is reduced to equation (4), corresponding to the
unperturbed RHF, by taking γ → 0. For the cases in which γ �= 0, we checked numerically
the correctness of this equation by comparing until generation g = 5 the analytical results
(implemented in a program written in the OCTAVE language [26]) with the numerical
diagonalization of Ap provided by the Fortran routine CS [27]. Besides the values obtained
through equation (32), we have two further non-degenerate eigenvalues given by the solution
of λ2 − (f + 1 + iγ )λ + iγ = 0, which replace the values 0 and f + 1 of the unperturbed RHF.
The degeneracy of the eigenvalues will depend on the generation when they appeared for the
first time. Knowing the exact analytical spectrum of the pRHF we will turn our attention to
use it for some applications.

4. Results

The dynamics of the general Gaussian structures can be described by a set of linearized
Langevin equations for all the position vectors Rn of the nth bead of the structure:

ζ
dRn(t)

dt
+ K

N∑
m=1

AnmRm(t) = fn(t) + Fn(t), (33)

where ζ is the friction constant of the beads, K is their elasticity constant and A is the
connectivity matrix. The stochastic forces fn(t) are assumed to be Gaussian, with 〈fn〉 = 0
and 〈fnα(t)fmβ(t ′)〉 = 2kBT ζδnmδαβδ(t − t ′) (α and β denote the x, y and z directions).

We focus on the motion of the general Gaussian structures under a constant external force
F = Fθ(t − 0)ey , switched on at t = 0 and acting on a single bead in the y direction. The
displacement averaged over the fluctuating forces fn(t) and over all the beads of the structure
is given by [3, 11, 23]

Y (t) = F

ζN
t +

Fτ0

ζN

N∑
j=2

1 − exp(−λj t/τ0)

λj

. (34)

As seen in section 3.2, for a perturbed RHF, because of the non-hermiticity of the
operator Ap which replaced A, the eigenvalues can be written as λj = εj + iδj . Thus the
average displacement, given by equation (34), is a complex number and can be split in a real
component and an imaginary one:

Y (t) = 	(Y (t)) + i
(Y (t)), (35)

where

	(Y (t)) = F

ζN
t +

Fτ0

ζN

N∑
j=2

εj − exp(−εj t/τ0)[εj cos(δj t/τ0) − δj sin(δj t/τ0)]

ε2
j − δ2

j

(36)


(Y (t)) = Fτ0

ζN

N∑
j=2

−δj + exp(−εj t/τ0)[δj cos(δj t/τ0) + εj sin(δj t/τ0)]

ε2
j − δ2

j

. (37)

7



J. Phys. A: Math. Theor. 43 (2010) 105205 A Volta et al

0 4 8 12 16
log

10
 t

-2

2

6

10

lo
g 10

(
Y

 )  γ=0.0
 0.000001
   0.0001
     0.01

Figure 5. The real part of the averaged displacement, equation (36), for pRHF of functionality
f = 3 and generation g = 13 with the strength of the trap being γ = 0, 10−6, 10−4 and 0.01.
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Figure 6. The imaginary part of the averaged displacement, equation (37), for pRHF of
functionality f = 3 and generation g = 13 with the strength of the trap being γ = 0, 10−6, 10−4

and 0.01. The continuous lines are kept only to give a feeling of the curves.

It can be easily seen that if γ = 0, implying that all δj → 0, the imaginary part of the
displacement vanishes while the real part will have the known form of the unperturbed RHF
[12].

In figure 5 we plot in the double logarithmical scale the real part of the average
displacement for pRHF of functionality f = 3 and generation g = 13. The constants
were set to F/ζ = 1 and τ0 = 1. In the region of very short times Y (t) = F t/ζ , which
corresponds to the situation when only one monomer moves, and in the limit of very long
times Y (t) = F t/Nζ , when the whole structure drifts. In the intermediate time domain the
topology of the structure will come into play. For γ = 0 a scaling region is easily seen, as
spotted before by one of the authors [12]. When γ increases, this scaling region will disappear,
even for small values of the trap strength γ = 10−6 or 10−4.

Figure 6 shows, in the semi-logarithmical scale, the imaginary part of the average
displacement for pRHF of functionality f = 3 and generation g = 13. If γ = 0 the
imaginary part of the average displacement, 
(Y (t)), is equal to 0, as expected. Although the
physical meaning of this quantity for γ �= 0 is difficult to assess, some qualitative remarks can
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Figure 7. Storage modulus G′ for RHF of functionality f = 3 and generation g = 14 where the
strength of the trap is γ = 0, 10−6, 10−4 and 0.01.

be drawn. One can observe that for very long times 
(Y (t)) is a constant dependent on the
imaginary and the real part of the whole eigenvalue spectrum:


(Y (t)) → −Fτ0

ζN

∑
j

δj

ε2
j − δ2

j

. (38)

It was observed that the imaginary components of all the complex eigenvalues, δj , will
increase by increasing γ (this happens in the range of small γ values, see [29] for details
of this specific case and [21, 22] for similar situations), making possible that the sum from
equation (38) changes its sign. In figure 6, in the limit of very long times, this change is clearly
noticed.

Another quantity which may be accessed through micromechanical manipulations [24] is
the mechanical and dielectric relaxation. In the mechanical experiments the complex dynamic
modulus G∗(ω), i.e. its real (the storage) G′(ω) and imaginary (the loss) G′′(ω) components
[12, 16], is analyzed. Disregarding the constants present in its mathematical expression, G∗

appears as

G∗(ω) = G′(ω) + iG′′(ω) =
∑

j

ω2
/
λ2

j + iω/λj

1 + ω2
/
λ2

j

. (39)

Again, we write the eigenvalues as λj = εj + iδj and after some calculations we obtain
the storage and the loss modulus for complex eigenvalues:

G′(ω) =
∑

j

ω4 − ω3δj + ω2
(
ε2
j − δ2

j

)
+ ωδj

(
ε2
j + δ2

j

)
(
ω2 + ε2

j + δ2
j

)2 − 4ω2δ2
j

(40)

and

G′′(ω) =
∑

j

ω3εj − 2ω2εj δj + ωεj

(
ε2
j + δ2

j

)
(
ω2 + ε2

j + δ2
j

)2 − 4ω2δ2
j

. (41)

In equations (40) and (41), if we take γ → 0, thus all δj → 0, we obtain the well-
known expressions [11, 12]. In figures 7 and 8, we plot in double logarithmic scales to
base 10 the storage and the loss modulus for RHF of functionality f = 3 and generation
g = 14. In the very low frequency limit the storage modulus G′(ω) shows an ω2 dependence,
whereas the loss modulus G′′(ω) increases linearly with ω. In the limit of high frequencies

9
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Figure 8. Loss modulus G′′ for RHF of functionality f = 3 and generation g = 14 where the
strength of the trap is γ = 0, 10−6, 10−4 and 0.01.
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Figure 9. Storage modulus G′ for RHF of functionality f = 2, 3, 4, 5, and 6, and of generation
g = 14 where the strength of the trap is γ = 0.01 for all the curves.

G′(ω) shows a plateau behavior, whereas G′′(ω) decays, after showing a maximum, with
ω−1. In the intermediate region the topology of the structure and the influence of the traps
will come into play. For the case of no trap in the structure, we observe a scaling region
in this intermediate region. This slope is given by d̃/2 = ln(f + 1)/ ln(3f + 3) which
manifests the scaling of the fractal, see [16]. By inserting in the f CC the traps we can easily
note that even for a very small trap’s strength (10−6) the behavior is drastically different.
The scaling region becomes smaller when γ increases, and for γ > 0.01 it will completely
disappear.

In figure 9 we display the storage modulus, equation (40), for RHFs of generation g = 14
and functionalities f = 2, 3, 4, 5 and 6, corresponding to structures ranging from N = 214

to N = 614. For all the cases we have the same strength of the traps: γ = 0.01. We stop to
note that in the intermediate frequency regime a well-defined scaling region was observed for
γ = 0, for all the values of f . In the case depicted in figure 9, even for a small perturbation
strength, such as γ = 0.01, this scaling region has been drastically shortened, for all the
functionalities studied.
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5. Conclusions

In this work we focused on the eigenvalue spectrum of the perturbed regular hyperbranched
fractals, i.e. RHF with traps in the f CC, as depicted in figure 1. The perturbation has been
taken into account by introducing a complex contribution to the influenced beads. Although
we had to deal with complex numbers, we have been able to determine analytically the full
spectrum of the operator Ap. We used this spectrum to calculate some useful quantities, such
as storage and loss moduli, and the average displacement.

For the storage and the loss moduli, we observed that even a small perturbation strength,
such as γ = 10−6, will have a big influence. The scaling in the intermediate region, observed
for unperturbed RHF, will start to shorten while increasing γ, and for γ > 0.01 it will
completely disappear. For pRHF the average displacement can be split into two components,
the real and the imaginary part. For the real component the behavior for the extremal (very
short and very long) time regimes was as expected, namely a linear dependence. In the
intermediate time domain the traps destroyed the scaling observed for unperturbed RHF.
We are confident that such macroscopic observables, such as mechanical relaxation and the
average displacement even in very small perturbative terms (i.e. non-comparable in magnitude
with the matrix elements of A), may reveal much about the underlying microscopic structures.
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